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A number of papers is devoted to problems of small oscillations of viscous fluids. Waves 

on the surface of a viscous fluid of infinite depth were examined for example in [I]. In [3] 

a boundary layer method is developed which is applied to problems of oscillations of a 

fluid in vessels in the case of small viscosity, [34] and others use this method to solve 

a series of problems on oscillations of a low viscosity fluid in certain regions. Certain 
general theorems on properties of characteristic oscillations of a heavy viscous fluid in a 

vessel are established in [7]. In [8] the approximate expression for the decrement of damp- 

ing of free oscillations of a heavy viscous fluid in a cylindrical vessel of infinite depth 

is obtained. Results of experimental investigation of oscillations of a fluid in vessels 

are given in [9]. 

In this paper free small oscillations of a viscou5 in~ompressibIe fluid are studied in a 

stationary vessel of arbitrary shape in presence of gravity. In the main part of this paper 
the Reynolds’ number is assumed to be large (viscosity small) which makes it possible, 

aa in [z-6], to apply the boundary layer method. The investigation is carried out by a 
method which is analogous to tbe one which was used in [lo] in the study of motion of a 

body with a cavity completely filled with viscous fluid. Asymptotic relationships are ob- 

tained for eigenvalues and eigenfunctions of the problem on free oscillations of a viscous 

fluid in an arbitrary vessel. Decrements of damping and corrections to eigenfrequencies 

due to viscosity are expressed through equations which depend only on the corresponding 
eigenfrequeucies and eigenfunctions of the problem on oscillations of au ideal fluid. 

computations are carried out for some specific forms of vessels. 

In the last part of the paper the special character of motion of a viscous fluid near the 

line of contact of the free surface with the wall of the vessel is elucidated. Here free 

oscillations are examined for arbitrary Reynolds’ number. 

1. We shall examine the motion of a viscous incompressible fluid of density p and 
kinematic viscosity X.J in a stationary vessel (Fig. 1). The equations of motion of the fluid 

have the fem. 

I:( i_ tu\‘) l.1 .:: -- p-‘v’ I’ -- gk -+- v.\L’, div U :Z 0 (1.11 

Here t is the time, U is the velocity of the fluid, P is the pressure, g is the acceleration 
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due to gravity, unit vector k is directed vertically upward, and index t indicates a partial 

derivative. Assume that L is a characteristic lineardimeneion of the vessel, T=(L/g)$ is the 
characteristic time (of the order of period of oscillations), I is the characteristic amplitude 
of oscillation of fluid particles and the Reynolds’nnmber R is large 

fi = LQ”-$-t = L=l=g%y-1 > 1 (1.2) 

Equation (1.1) can be linearized if 1 (U V) u I< ) ut 1, With respect to the order 

of magnitude we have: \Ul ?r E T-‘, /U,i - I T-‘- For operator 5’ outside the boundary 

layer the estimate p - L-1, is correct, therefore 1 U ‘;;7 1~ IL--l T--l. In the 

boundary layer individual components of vectors U and v have different orders of mag- 

nitude (see below), however, the order of magnitude 1 U ‘c7 1 is here the same as outside 

the boundary layer. Therefore the condition of linearization is reduced to the form 

FIG. 1 

1egL (1.3) 

and in the following it will be assumed to hold. 

Below the problem is examined in a linear formulation 

and is solved in the form of series in terms of para- 

meter R’$ << 1. Since it is de&able that the error due 

to non-linearity which is 0 (f/T), does not exceed terms 

of the n-th approximation fn the solution of the linear 

problem, we must impose the condition 2 / L < R-n 2, 
which is stronger than (1.3) (see also [5] 1. For com- 

putation of the decrement of damping in the first approxi- 

mation the fulfflfmmt of condition (1.3) is sufficient. 

We csn write the lfnesrised equations of motion and 

boundary conditions, in the form 

Ut = - Q-‘VP --gk + YAU, divU=O in n, u=o on s 

Here D is the region occupied by the fluid at rest and S and x are the wetted wall 

surface and the free surfsce, respectively, in the condition of rest. A Cartesian system 

of coordinates zyz is selected such that the plane xy coincides with the unperturbed free 

surface 2, while the z-axis is oriented vertically upward (Fig. I). Conditions on free sur- 

face expressing the eqnafity of forces inside and outside the flaid (P, is the constant 

pressure ontside the fluid) are taken with respect to 2. while I = F (x, y, t) is the eqna- 

tion of the perturbed free surface. 

We are looking for the solution of the problem of free oscillations of a fluid in the 
form 

U = e%, P=P,- pgz -I- pe% F = ehff (5, Y) (1.5) 

where A is a complex eigenvaloc and u and g are fnnctions of coordinates r, y and z. 
Snbstitnting (1.5) into 11.4) we arrive at the eigenvalue problem 



hu= -Tq+vAu, divu = 0 in D, u=O 0nS 

It is required to determine values A# 0 for which the boundary value problem (1.6) 

admits a nonzeeo solution, and to find eigenfunctions u and q for these h. The last condi- 

tion (1.6) can be used for determination of the form of the free surface after solution of the 

problem. Through appropriate choice of units of length and time measurement it is possible 

to achieve that L Q 1 and g * 1. Then, by virtue of (1.2!, problem (1.6) will contain a small 

parameter V < 1. 

2. The solution of problem (I.61 is sought, as in [2 to 6 and lo], by the boundary layer 

method [ll]. We assume 

u=v+w, q=s+h. v = v” + V’W + . . . 

S=S”+v’w-+-..., ?b=h”+vwl+.** (2.1) 

Here W and h are functions of the type of boundary layer. These functions can also 

be expanded in series of powers of v %, where all coefficients of their expandons & hk 

diminish rapidly with increase of distance from the boundaries of region D. Let us de- 

signate by DS and DC regions of boundary layer adjacent from the inside to surfaces S and 

2, respectively, and of thickness of the order of v ‘/;. Then it can be assumed that w = 0 

and h = 0 outside DS end D,. 

Let us require that the functions V and r and also w and h , satisfy Equations (1.6). 

Boundary conditions for these can be obtained in the following manner. Let functions 

Vi, Sit Wi, h’, ai, where i = 0, 1 ,.., 

vk d 

k - 1, be already determined. For determination of 

an .rk it will be required that these functions, together with vi, fi, wi, and hi found 

earlier, satisfy the condition tttt = 0 at the wall S and the first of conditions of (1.6) on 2. 

Here tt is the n&t vector of the inward normal to S. 

In the solution of the boundary value problem for V’ and sk the value hk will also be 

determined at the same time. Then we shall determine the functions wk and hk which, 

taking into account vi, 3, wi, hi, Ai, vh’, sk, and xk already found, must satisfy the 

condition of vanishing of components of vector u tangential to wall S,two conditions of 

(1.6) of vanishing of tangential forces on s, and also the conditions that w k -* 0 and 

hk -+ 0 outside DS and DE. It is not difficult to convince oneself that the described process 

for constructing the solution formally ensures satisfaction of equations and boundary condi- 

tions with an error of the order of ~(~-~lflz, which tends to zero with increase of the 

numbers of approximation k. 

Since functions v and s represented by series (2.11 aatiafy Equations (1.61, we find 

for the k-th ap’proximation 

i hivk-i __ _ ~7s”’ + Avk-2, (ii” yk L;: 0 (k-0, I,...) (2.2) 

i-0 

where the term A.vkM2 in the first equation of (2.2) is not present when k = 0, 1. If all 

h’ -,G 0, then from (2.21 it is easy to obtain by induction that ‘all V 
k 

are potential vectors in 

D and AT” = 0. Then, by virtue of (2.2) we have 
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k 

vk = yi’v”, Aqk = 0, SE = - 2 &i@-i (k = 0, 1,. . .) (2.3) 

i=o 

In the last of eqnations of (2.3) the fact that function ‘pk is determined with accuracy 

to an arbitrary function of time, is already utilised. Below we limit ourselves to the ex- 

amination of v”, so, h”, vl, sl, hl, and also ~‘and howhich will simply be denoted 

by w, k. 

As follows from the above-described process of determining the solution, we have for 

functions V* and s o the boundary conditions 

Utilizing Equations (2.31, we obtain 

V”ll=O and A'S0 = gv," ens. 

A@ = 0 in D, ‘$$ z 0 on S, 
(2.4) 

v” = xjrp”, $0 = __h”@ 

The eigenvaloe problem (2.4) for cp” describes free oscillations of an ideal fluid and 

has a discrete spectrum of purely imaginary eigenvalues J,” = r+ iurn, o, > 0, 

m = 1. 2, . . . . with finite mutliplicity 1121. The eigenfanction a,,, corresponding to the fre- 

quency 0 m satisfies the boundary value problem 
f2.S) 

A@,=0 inD, dcD,/6’n=O onS, &Dm/8z=(w,,,2/g) c&,,onZ 

We shall look for characteristic oscillation of a viacons fluid which, as v -+ 0, passes 

into the m-th oscillation of an ideal fluid, i.e. we shall write 

cP* = Qtnt, h” = * iw, 

For functions w and A we have, in accordance with what was said above, the bound- 

ary value problem 

3t”w = - L-h _i- YAW, div w = 0 in D,, D, 

‘w* z-z - VQ on s, w -+ 0, h-+ 0 outside D,, D, 
(2.6) 

a (WX -+ ux’) a(wL .:-~,y 

az -!- &_ = 

Here Wo is the projection of vector w on the plane tangential to S; vector V*OU S 

also lies in this plane by virtue of relationship V% = 0. Let us find the asymptotic 

solution of the problem (2.61 separately in regions DS and .& as v + 0. In the region &, 

which is the intersection of these two regions and which is adjacent to the contour I? (the 

line of contact of free surface z and walls of vessel s) the solution has a more complicated 

character. 

In the region Ds we introduce curvilinear orthogonal coordinates ~$15 such that the 

surface r= 0 coincides with surface S and such, that in the region DS, c> 0, Let HE, H,, 

and H denote the corresponding Lamd’s constants, Hc”, Nrio, and HL” their 
5 

values when <= 0 and t&, w,, and w,: the components of vector w in these coordinates. 
Without loosing generality we set H;” = 1. Then, with accuracy to the infinitesimals 
of higher order, cis the distance from snrface S along the inner normal and WC is the 
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projection of W 011 the normal n. We also write 

5 z.Gz y’itu, WC = Y1iZWa (2.7) 

and pass in Equations (2.6) to variables cl 9 anda. Taking into accountthat 4% y’, and U, 1 iu 

DS aud omitting infinftesimals of the order v * and higher in equations of motion (2.61, 

we reduce these equations to the following form (see also [IO]) 

Since h 4 9 outside region DS, i.e. when u + a0 , it follows from (2.8) that h rr 0. Then 

we obtain the folIowing bonndary value problem for w,taking into account condition (2.6) 

on S 

’ * 

how* = y$- 1 

w* z= - v” when a = 0, 

awa Div w* +- z = 0 

w*--+o, w, --f 0 when u * 00 
(2.9) 

Here w+ is a vector with components WC, and w *, and Div designates divergence 

operation with respect to two-dimensional vector on the surface S. 

From (2.9) we shall determine first w”c and then w, 

w* = -v”exp(~X%), w, = (Div v” / r/p) exp (f&z) 

where we have selected the branch viF, for which Re 1/x”< 0. Returning to 

variables 5 and wC, according to (2.7) and taking into account the equality v” = i:~(pO, 

we obtain finally in DS 

w”& r). 5)=-Vcp0(& ~,o)exp(l/h”/v& /l, so 

Wr. (E, % 5) = (u’i / I/p) niv IV@ (E, q, O)] cxp (j/ho/~g (2.10) 

In region DE we write by anaIogy to (2.7) 

z z.z y”$, r&l_?* = V”‘aw0 p (2.11) 

and pa= in equations aud boundary conditions (2.6) to variables T, y and p, neglecting 

the infinitesimals of higher order in U. By analogy to (2.8) and (2.9) we obtain Equations 

Boundary conditions (2.6) on x and conditions on the boder of the boundary layer yield 

in the first approximation, with consideration of Equations (2.4) and (Z.ll), 

ut,, W?J, wg + 0 a8 p-e-cc 

Let us solve Equations (2.12) with conditions (2.13) (first for wz and u~y then for wp) 

and chauge to the variables I and tur 
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~~(2, y, 2) = 2 (+)“‘-tJ& (5, y, 0) exp (- (F)‘“z) , lie l/P < 0 

q, (5, y, z) = 2 i,+)“’ $& (r, y, 0) exp (- (G)‘i’z) 

2v PqJO 
w, (2, y, 2) = - h” __ %ZZ 

(5, y, O)exp(- (c)“‘z), 11~ 0 

Here Laplace’s equation for q” was used. Solutions of the form (2.14) were obtained 

in [3]. As was assumed, above solutions (2.10) and 12.14) decay rapidly (exponentially) 

when 5 > V’!r, 1 z 1 > V’/r, i.e. outside the boundary layer. As was noted in [3], the 

components of vector w tangential and normal to the boundary of region D, have different 

orders of magnitude; moreover these components are larger in DS, than in Dx (see (2.10) 

and (2.14)). 

Let us estimate functions w and h in region Dr, adjacent to contour r. Thickness of 

this region along the normal to r is of the order of v’, and for the differentiation operator 

in Dp , generally speaking, the estimate 1 V 1 d v-‘/p is appropriate. 

Therefore, since 14 $0 (1) outside Dr , in & we will have (~1 W 1 and 

dw,ldz NV -‘I.. From Equations (2.61 it then follows that Ioh/- 1, and, since 

A= 0 outside &, then h ,,, v ?4 in Dr. The obtained estimates 

1~l-1, aulzja2-~-‘% h-v’/2 in 4 (2.15) 

will be used subsequently. 

Functions V' and s1 must compensate for the discrepancy in fulfillment of condition 

tttt = 0 and S and of first condition of (1.6) on 2. The discrepancy is due to solution in the 

boundary layer of w and h. We shall write these conditions substituting U, q and x into them 

according to Equations (2.1) and (2.3) (with accuracy to the infinitesimals of higher order) 

u = 17cjl” + vlQ’pl + w, q = --h$” - d/r (h’=r$ + h’q”“)+ h (2.16) 

h = A” + y’l2hl 

and taking into account boundary conditions (2.4) for Cp” 

W’ a@ -=-- onS, _-_- ( h” )’ rp’ $ Zh”h90 - 
afL az g 

- aw 
;;+-&h-F$ l 

(2.17) 
_--C- on Z 

Here the orders of magnitude of wr and h on z are taken into consideration and 

infinitesimals of higher order have been dropped. We note that almost in the entire region 

of ): (with the exception of a narrow region with a width of the order of vH , adjacent to 

contour r) it is also possible to discard the last three terms in the second condition of 

(2.17), since they will be small (no larger than v”) by virtue of (2.14). 

In the adopted approximation the solution of problem (1.6) is determined by Equations 

(2.16) in which w and h outside Dr are given by Equadons (2.10) and (2.14). For deter- 

mination of (PO, A”, ‘pl, and A’ it is necessary to solve problems (2.4) and (2.17) for the 

Laplace’s equation. 
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The correction h’ to the eigenvalne is of the greatest interest. It turns out that it can 

be expressed in terms of A’and Cp” only. Into Green’s equation for fnnctions~‘,nnd r$ 

harmonic in f) 

S! 
s 

(2.18) 

r. 
we substitute normal derivatives of these functions on S and z according to (2.4) and f2.17). 

We note that the last two terms in the second equation of (2.17) are finite (not small) only 

in the region with area Q v ’ near contour r, where, according to estimates (2.15), they 

have the order of magnitude 0 (I). Therefore these terms will make a contribution of the 

order of yH to the integral (2.18) over 2 and can be dropped. The term (---Y’~K’~) cannot 

be neglected from (2.17) since it will make a finite contribution in the integration over xc. 

After indicated trausformations Equation (2.18) is brought to the form 

From this we find, by utilizing the theorem of Gauss~strogradskii and the equation 

div w = 0 

Function W is finite in Ds and Dp, and small in D, (see (2.10), (2.14) and (2.15)) 

and practically equal to zero in the remaining part of region D. Since region DS has a 

volume .,,v~ and Df of the order II, the main contribution to the integral (2.19) over D 

will be made by the integral over DS. In the region ttS it is possible to assume w = w+ 

with accuracy to infinitesimals of higher order fsee (2.10)). Function ‘?r#” can be evaluated 

at [== 0, i.e. on the wall S. Furthermore, since WC rapidly decreases with increasing 5 in 

the region DS, the integration over DS can be reduced to integrating first over 6 from 0 to 

eo and subsequently over the surface S, Then Equation (2.19) is converted into the follow- 

ing form 
(2.20) 

In the integration over t, Equation (2.10) for W* was utilized. 

We shall now quote the expression for P when Re VP < 0 

h” = f iOmr IjP=--_(2&i)/J1/2] 1/lG, %>O 

We substitute into Equation (2.20) expressions for haT ViL” and (PO = @,. 

Equation (2.20) is solved for A’ and subsequently X1 is substituted into Equation (2.16) 

for x. 

Finally we obtain 
(2.211 



On free oscillations of a viscolrs fluid in a vessel 997 

Here X=h m is the eigenvalne of the problem (1.6), close to the m-th eigenvalue of 

the problem on oscillations of ideal fluid. 

Equation (2.21) shows that viscosity leads to the appearance of a damping decrement 

of characteristic oscillations (Re Am < 0) and to a decrease of fundamental frequency by 

an amount equal to this decrement. We note that the numerator of Expression (2.211 for Am 

is proportional to energy dissipation in the boundary layer while the denominator is pro- 

portional to the kinetic energy of oscillation of an ideal fluid. In [7] it is pointed out that 

problem (1.6) has when v > 0, a finite number of complex eigenvalues. Equation (2.211 is 

applicable , only to a finite number of frequencies, i.e. form<mO,whereme+masu+O. 

Equation (2.21) is also valid in the case of plane oscillations of a fluid in an infinite 

cylindrical vessel (channel) the generators of which are horizontal and perpendicular to the 

plane of motion. In this case D must be tahen as the cross-section of the cylinder by the 

plane which is perpendicular to the generators, S must be taken as the curve along which 

the plane intersects the walls of the vessel, and section 2 as the section of free surface 

by the same plane. 

3. For computation of A,,, from Equation (2.21) it is sufficient to solve the eigenvalue 

problem (2.5). This problem has been solved analytically or numerically for many shapes 

of vessels, therefore computation of A,,, for these vessels is reduced to computation of 

quadratures. We shall examine some examples. 

Let the vessel have vertical walls and a flat bottom. The depth of fluid is constant 

and equal to H. Solution of problem (2.5) in this case [I] can be sought in the form 

CD, = 9, (z, Y) cash km (z + HI (3.1) 

Here function I/J, is the solution of the eigenvalue problem 

A$,+ km%),=0 in Z, aqdalv =O on r (3.2) 

where A is the Laplace’s operator in the zy-plane and N is the normal to contour r lying 

in this plane. Frequencies O, are expressed through values k, by the equation 

%x = gk, tanh tk,,$ (3.3) 

Substituting (3.1) into Equation (2.21) for A,, we obtain after elementary integration 

with respect to z 

Eigenvalues h,,, are determined by the general equation (2.21) in which 0, and Am are 

given by Equations (3.3) and (3.4). Considering that km and $,,, do not depend on H, we 

simplify expressions (3.4) and (2.21) for Am and X, for the cases of infinitely great and 

infinitely small depth of fluid 
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Let us examine a vessel in the shape of a rectangular parallelepiped for which the 

region x is a rectangle 0 < x < a, 0 4 y < b. 

Solution of problem (3.2) in this case has the form 

Simple computation by means of Equation (3.4) gives 

1 
1 tanh (km,]:0 rn2tt~2 1 

A. mn = --. 1~ ci + 2zp) + ?! cm; + “-xj!q _ 
k 
27; 

i 

(3.7) - 
ch’ (km&) 

“;;? -.- + z!&) + ~~~ (/EL i_ no + 0) 

where am0 and &, are Kronecker deltas. Equations (2.21), (3.31, (3.6) and (3.7) determine 

the solution of the problem in the case of a rectangularparallelepiped.Assuming that n = 0 

and b >> a in (3.6) and (3.7), we obtain the following equation for the case of plane trans- 

verse oscillations of a fluid in a long rectangular channel 

A,, = ns 
i 
zD*;;;Ou) + ~*~(~m~~~~ -1. k,, = F (m = 1, 2, . . _) (3.8) 

i 

Here a is the width and N the depth of the channel. 

If we also write H = 00, Equations (3.8) and (3.5) will give characteristic frequencies 

of plane waves of a viscous fluid confined between two parallel vertical planes 

a, _ * i (aEg’_ (1 * q (!!!T$y (m= 1, 2, . ) 

This case was examinediu [4] where the same expression was obtained for X , In the 

other limiting case of a channel of small depth (H < a) we find from (3.8) and (3.; 

a m=f q (gfq%-(I *q (Jgg$)‘I’ (m-l, 2, , . .) 

Now we shall examine a vessel in the shape of a right circular cylinder of radius a 

and depth H. Solution of problem (3.2) for a circle r,( a can be taken in the form 

&r = 2”“~a (t&r/a)> ?#,,(l) -- J,, (p,,,r / n) cos mg, 

*mn(a) = Jm (pmnr/fl) sin mtp (rrr, n = 1, 2, . . .) 
(3.9) 

Bere t and ‘Pare polar coordinates in the xy-plane with the center on the axis of the 

cylinder, and ~(mn are consecutive positive roots of derivatives of Bessel functions 

Jm’ (Pm721 = O* O<Pml<Pm2<, . ’ ( m=O, I,... 

II = 1, 2, . . . 1 
(3.10) 

The numbers k nm are connected with ~mn through reiationshipe akmn = pmn, where 
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m = 0, 1, . . . . n = 1, 2, . . . . while the frequencies CL) mn are expressed through k,,,” by means 

of the general formula (3.3). The eigenvalues kmn for m > 0 are double valued. 

Let us compute for Function (3.9) the integrals which enter into Equation (3.4) 

s (VI&,)” ds --x 1 [J,‘? (2) + 5 J,2 ix)] xdx = n 1; [_ J, (xJm’)’ -! 

:: 0 0 

0 

In tile transfotmations some equalities for Bessel functions [ 131 were used and also 

the condition (3.10). Substituting results of computations into Equations (3.4) and (2.21) 

we find 

In the particular case m = 1 and N >> o an analogous equation for the coefficient of 

damping Re hr,, was obtained in an approximate manner by a different method in [s]. 

fn [91 P ex erfmental relationships are presented for the damping coefficient of character- 

istic oscillations of a fluid in a cylinder as functions of H/a and the Reynolds’number 

for the principal oscillation (m = 1, n = 1, pII = 1.841). Results of calculations by 

means of Equations (3.11) are, qualitatively, in complete agreement with experimental data 

for various H/a and V. The theoretical values of damping coefficients Re h,, , computed 

from Equation (3.11) are approximately equal ta experimental values obtained in [9] multi- 

plied by 0.71. This ratio is maintained for various v and N/a. The same discrepancy 

between theoretical and experimental data for H = m is noted in (91. 

As an example of a vessel with varying depth we shall examine a channel with flat, 

mutually perpendicular walls inclined at an angle of 45O to the vertical. The region D 

occupied by the fluid is defined by inequalities / y j - a ~6 z iy 0, where a > 0 is the 

maximum depth of channel equal to one half its width. The characteristic oscillation of an 

ideal fluid in such a channel, corres~nding to the smallest frequency (principal form of 

oscillation), is described by the potentiaf 

d), -; (y + Q) 3, q: 7: g / a (3.12) 

Relationships (3.12) are presented in [l] and it is not difficult to verify directly that 

they satisfy Equation (2.5). Substituting (3.12) into (2.21) and taking into account the 

remark at the end of section 2 (here S is a broken line I = Iyl - u for jyj < a and c is a 

section jyi ,< a of the y-axis) we obtain after elementary calculations 
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4. Let us examine the behavior of the solution of problem (1.6) near the contour r, 

the Iine of contact of free surface c and walls S. Let us select the origin of coordinates 

0 at some point of contour r‘, orient the z-axis vertically upward,the r-axis along the 

tangent to r’ and the Y-axis along the inward normal to r in the plane x (fig. 1). Limiting 
ourselves to a small region around 0, we replace the surface S by the plane tangent to S 

at the point 0. The carve f‘ is replaced by its tangent at 0, i.e. by the r-axis, and we 

shall examine tbe plane motion in the vertical Yz-plane. 

Equations and boundary conditions (1.6) take the form 

hu = -Vq+-~Au, div u = 0 in D, u = 0 when z-----y tan8 

(4.1) 

% f=; when z=O 

where u is a two-dimensional vector with components u 
Y 

and ur snd 8 is the angle between 
the surface of walls S and the horizontal plane at the point 0. On the basis of continuity 

equation it is possible to introduce the stream function \I! such that Uu = dy ' d.~, and 

Y = - dy / 8~. Changing to stream function ‘&’ and introducing polar coordinates r 
and 0 in the yz-plane, we rewrite relationships (4. I) in the form 

gY, + hq + %v (Ye/ rh. t= 0, 

f=--P,Jhwhen @==O, Ul,.=Ulg=0when @=---6 (y = P cos e, 2 = P sine) 

Here subscripts r and 8 designate partial derivatives. Function f(r), as before, de- 

termines the rise of free surface, We are looking for a solution of problem (4.2) in the form 

Y (fi 6) = Pk M (8) + * * * (4.3) 

as r -+ 0, where dots indicate terms of higher order with respect to r. In this connection 
vslocit components are of order rk when r + 0, components of stress tensor have the 
order % -1 and the force acting on the waII has the order rk. Requiring boundedness of 
velocities we will assume k > 0. Substituting (4.3) into the first equation of (4.2) we shaII 
determine the function q in the form 

Q = q. (@) + f~r~-~ / (k - 1)JM” + (k + 1)2MJ’ + . . . (k=#= $1 (4.4) 

where primes indicate derivatives with respect to 8. We substitute Expressions (4.3) and 

(4.4) into the second equation of (4.2) 

qo’ + [vrk-1 / (FE - I)] [M” + (k i- 1)2Ml” + Y (k - 1) r’-l[M” + 

+ (k + I)%U + . . . = 0 

From here weobtain for k f 1 an equation for the function M which is easy to solve 

fM,, + (k + l)Zfil]” .+ (k - 1)2 [nf” i (k + 1)2nf] = ’ 
(4.5) 
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M (0) = C, sin (k + 1) 0 + C, cos (k i- 1) 0 $ c, siQ (k - 1) 0 $- 
-+ c, cos (k - 1) e 

Here I& C,, C,, EVIL C, WC constants. Now we substitute (4 3) and (4.4) fnto 
boundary conditions (4.2) and equate coefficients of the principal powers of r. Far k f 1 

WC obtain the condltioas 

M”’ + (k + 1)2M’ + 2k (k - 1) 173’ = 0, M” - [k2 - 1) Jf = 0 when 13 = 0 

&I=& j’@=O wheno--_6 (4.6) 

Substituting the getiaral solution (4.5) far M (8) into canditioaa (4.6) we obtain a 

system of linear homogeneons equations fur constants Ci 

c, * c, = 0, c, (k + 1) + 6, (k - I} - 0 

- C1 sin (k + 1) 6 + C, cos (k + 1) 6 - C3 sin (k - 1) 6 + 
+ c, cos (k - 1) 6 = 0 

(4.7) 

C, (k + 1) co3 (k + 1) 6 + C, (k + I) sin (k + 1) 6 + 

-I- G (k - a) CM [k - 1) 6 4 C, (k - 1) sin (k - 1) 6 = 0 

For a nontrivial solution to exist, it is necessary to set the determinant of system 

(4.7) equal to zero4 A characteristic eqastion is obtained for the index k 

(P + 1) cos (k _t 1) 6 cm (k - 1) 6 + 

+ (k2 - 1) [sin (k + 1) 6 sin (k--1)6--11 = 0 

which for k > 0, Is reduced, by simple transformations, to the form 

cos k8 = k sin 6 (4.8) 

The smalfeet pwitive root k of Equation (4.8) is of intareet because it determines the 

principal term of mqmptotic expansian of the farm (4.3). It is easy to convince oneself that 

NC& a root k 161 atiats for any angle 8 in the interval (D,~T). The function k (8) de- 

creases monotondy from m to 0.5 on variation of 8 from 0 to 7~. Values of function k l&j 

were determined by numerical solution of Equation (4.8) on an electronic computer. Same 

of the values fonnd are presented in the table. A graph of function k (8) is represented in 

fig. 2 

FIG. 2 

We note that in the cam k = 1 B logarithmic term 

appeara in Equation (4.4) ; however the final reaolt, 

Equatien (4.8) does not change in this 0-c. 

If L (8) satisfies Equation (4.81, then from system 

(4.71 it is poaaible to find constants Ci with accoracy 

to an arbitrary factor C. 

Since constants k and Ci are found, this at the asma 

time completely determines the function M (8, fznm (4.5) 
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and the principal term of the solution of stream function (4.3). The constructed solution 

depends only on the angle of inclination of walls and, apparently, describes the character 

of singularity of solution of problem (1.6) near the contour r’; subsequent members of ex- 

pansion (4.3) must also depend on other geometrical properties of surface S (in particular 

its curvature). Hy means of (4.3) it is not difficult to determine asymptotic expressions 

when r + 0 for velocities of fluid, stresses and other hydrodynamic quankfities. Thus by 

virtue of (4.2) the elevation of the free surface f (rf is proportional to r as r + 0. 
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